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Abstract—The Internet of Things (IoT) revolution has mas-
sively introduced sensor-rich devices to an ever growing land-
scape of smart environments. A key component in the IoT
scenarios of the future is the requirement to utilize a shared
database that allows all participants to operate collaboratively,
transparently, immutably, correctly and with performance guar-
antees. Blockchain databases have been proposed by the com-
munity to alleviate these challenges, however existing blockchain
architectures suffer from performance issues. In this vision paper
we propose Triabase, a novel permissioned blockchain database
system that carries out machine learning on the edge, abstracts
machine learning models into primitive data blocks that are
subsequently stored and retrieved from the blockchain. As such,
it does not store detailed records on a medium, like blockchains,
which is fundamentally very slow due to the expensive verification
process. We lay out the primitive architectural blocks of our
design, the requirements and the inherent challenges. Triabase
employs technical novelties in respect to its consensus protocol,
namely the notion of Proof-of-Federated-Learning (PoFL). The
Triabase prototype system is implemented in the Hyperledger
Fabric blockchain framework, upon which encouraging prelim-
inary findings have been drawn.

Index Terms—blockchain, IoT, federated-learning, databases.

I. INTRODUCTION

Internet of Things (IoT) refers to a large number of physical
devices being connected to the Internet that are able to see,
hear, think, perform tasks, as well as communicate with each
other using open protocols [1]–[4]. IoT devices are connected
to Cloud and Edge computing appliances through massively
parallel I/O channels (e.g., 5G, WiFi 6) with milliseconds
latency offering new opportunities in industrial optimization,
human health and well-being as well as safety. In absolute
numbers, the IoT revolution is expected to bring the number
of such devices close to a staggering 40 billion in 2020, more
than double from 2019 [5]. This will procreate tremendous
opportunities for IoT applications between multiple parties,
such as collaborative multitasking techniques [6], machine
learning [7], cooperative benchmarking [8], and augmented
reality technology [9].

A key component in the IoT scenarios of the future is
the requirement to utilize a shared database that allows all
participants to operate collaboratively with more functionality.
The shared database can bridge the actual gap between the data
generated from the IoT applications [10] and the rate that these

are processed and analyzed in real-time. The objective is to
enable users execute updates and queries on the collaborative
database while preserving a consistent view among all users
maintaining the system consistency and transparency. More-
over, it is essentially common to be compromised by mali-
cious outsources. An innovative design of a shared database
with high performance, it is therefore required for all the
participants, in order to collaborate among each other with
trust. Blockchain databases have been recently proposed by
the community to alleviate these challenges. However, exist-
ing blockchain architectures suffer from performance issues
measured in terms of throughput and latency, mainly because
the transactions are executed in a sequential manner. The latter
in conjunction with confidentiality issues, does not leave much
space for scaling.

It is imperative to devise a database architecture that can
withstand billions of transactions per second, as opposed to
thousands transactions per second that is currently the case
for typical blockchains due to the expensive verification cost.

In this paper, we propose Triabase (inspired from Greek
“Tria”, meaning “three”, being a Database for the Web 3.0
era), a permissioned blockchain database system that carries
out machine learning at the edge, abstracts machine learning
in primitive blocks that are subsequently stored and retrieved
from the blockchain. In Triabase, we have two types of nodes
those that store the entire shared database, and the others that
use the database for their own operations, such as sending
query and update requests to the blockchain shared ledger.
We expect the blockchain nodes to be synchronized under
the decentralized blockchain network. The clients that utilize
blockchain for database operations will store the appropriate
block header only, as opposed to the full nodes that will store
the entire blockchain ledger.

For this purpose, the key challenge is to find a robust design
that is able to: i) Execute machine learning algorithms at
the edge; ii) Operate on a distributed environment; and iii)
Mitigate issues related to data privacy protection. Our main
goal is to guarantee the following aspects:

• Immutability: We want to ensure that any update com-
mitted to the blockchain is immutable and will not be
tampered by any malicious node;



• Transparency: We oblige the shared database to strictly
update according to the committed transactions. All
database operations e.g., insertions, deletions, updates
are transparent to nodes because users are able to get
all historical data of the transactions committed on the
blockchain, at any time;

• Correctness: Performing all the required operations with
minimal computational requirements and without the
excessive energy consumption, when a client receives a
query and/or results from a server node;

• Performance: Our system must support a wide range
of queries and indexes. As a result, we should allow
Triabase to achieve better performance to scale; and thus
improve the overall throughput of the network in order to
minimize any unnecessary overhead that causes latency;

• Privacy: Centralized artificial intelligence algorithms de-
mand from the clients to provide whole trained models,
which incurs high data leakage risks, something that must
be taken into account by Triabase.

To enhance user security and privacy in Triabase, we
propose federating learning [11] that is a new wise choice
for distributed machine learning. Federating learning differs
from the traditional artificial intelligence algorithms, since it
trains a global federated learning model at the server side,
by using only appropriate parameters from the locally trained
models, keeping the full amount of data at the user endpoint,
mitigating in this way several security and privacy risks.

In order to test the validity of the system, we have im-
plemented an initial version of our architecture using the
hyperledger fabric technology, which enables us to measure
the latency, as well as the throughput of different parts of
our implementation during the ingestion load and during the
searching query process. Our preliminary results are very
encouraging as they reveal that in our proposed architecture,
the tradeoff between the learning accuracy and the efficiency
of the trained models from the federated learning approach
achieve comparable results.

The main contributions of our vision paper are as follows:

• We introduce Triabase, a permissioned blockchain
database system enhanced with federating learning ap-
proach, which contains the running states and behavior
models of the blockchain nodes to ensure the security and
data privacy of users;

• We propose a new consensus empowering collaborative
mechanism, namely Proof of Federated learning (PoFL),
to share parameters over distributed multiple parties to
reduce the risk of data leakage and to protect federated
nodes from being tampered;

• We also implement our proposal with the integration
of the fabric open-source platform to provide a more
realistic blockchain scenario.

The rest of the paper is organized as follows. Related
work is presented in Section II while Section III presents the
proposed system architecture. Finally, Section IV discusses the
current limitations of the proposed system and future work.

II. BACKGROUND AND RELATED WORK

Blockchain architecture is mainly used to keep records on an
immutable chain of blocks, where nodes agree on the shared
state across a network of untrusted participants. This forms
the blockchain platform that can be viewed as a distributed
(transaction-log or) database system. The blocks are agreed by
the majority of validators according to the consensus protocol
that tolerates Byzantine faults. The most well-known platforms
include Capera [12], Hyperledger [13], Monoxide [14]. This
architecture does not require a centralized server and operates
in untrusted environments of arbitrary nodes.

The authors of [12] introduce a system named Caper, a
permission blockchain architecture based on an acyclic graph
and three consensus protocols to support internal and cross-
application transactions. Moreover, [15] introduces a novel
framework, called vChain, which is able to improve the storage
and computing costs of the user and employs verifiable queries
to ensure the system integrity.

Artificial intelligence along with the integration of
blockchain technology is a great promise to solve various
resource optimization problems. For instance, the merit of
the two technologies is proposed in [16] providing a secure
resource sharing scheme by developing a caching mechanism
with the usage of DRL. Reyna et al. [17] introduced how
blockchain may potentially improve IoT environments and
how blockchain can overcome IoT security challenges. How-
ever, AI algorithms, which are vulnerable to security threats,
depend much on centralization approaches, a fact that has a
negative impact on improving efficiency, because it consumes
a large number of communication resources.

Moreover in the literature, several research studies aim
at improving the scalability and performance of blockchain
networks. Algorand [18] and RandHound [19] achieve high
scalability by randomly selecting a subset of validators to
participate in the consensus, while maintaining the security
level. The study in [20] use directed acyclic graphs, instead
of a blockchain structure, to reduce the average amount
of time for each transaction. Blockbench [21] proposed the
permissioned blockchain, an approach for comparing the per-
formance of different platforms including Ethereum Parity,
and Hyperledger Fabric by using a set of micro and macro
benchmarks. Furthermore, [13] introduces the architecture of
fabcoin, which presents the performance of bitcoin in the
fabric network.

III. THE TRIABASE ARCHITECTURE

In this section, we introduce the TriaBase system architec-
ture in a bottom-up manner.

A. Blockchain Layer

The Bitcoin protocol uses a PoW (Proof-of-Work) con-
sensus mechanism to validate users’ transactions in the
blockchain. PoW, however, is a high-cost algorithm that leads
to excessive energy consumption. Therefore, a low-cost con-
sensus mechanism is required for the Triabase architecture
that will provide security with respect to Sybil attacks, at the



same time. In this paper, we propose the Proof-of-Federated-
Learning process (PoFL), which brings new technological
advantages with respect to user security level.

TriaBase blockchain nodes maintain a separate permission
blockchain, where the local models of federated learning are
stored in the blockchain distributed ledger. Hence, we detach
two types of records: the training model records and the
IoT dataset records. We distinguish only the first record in
the block that contains the aggregate model for the r round
difficulty. We consider every block generation as a separate
round of the federated learning process, where clients use the
shared model from block b−1 and their existing local models
to generate the next round local models.

The process starts with training local models by using local
data at the user side. Then, the communication process takes
place where all users broadcast and upload the trained models
to the blockchain nodes and store them as transactions to the
distributed ledger. The blockchain node that was the winner
from the previous round (depends on the blockchain difficulty)
is responsible for initiating the 2-step consensus protocol and
constructs the blocks with all the cached transactions that are
not yet validated.

In addition, the winner node is in charge for aggregating
the users local models and producing the shared model. Then
the shared model is added as the first transaction in the block
in order for the federated learning nodes to access it, in the
next round r+1. Our PoFL consensus protocol contemplates
that users who participate in the blockchain process will
be rewarded with training coins. Users are awarded coins
according to their performance in the training process, that
is whether the federated nodes training algorithm converges
faster and achieves higher accuracy. The winner node of
each round r is the one that achieves the highest accuracy,
considering the difficulty of the block. Furthermore, in every
training round the coins will be adjusted to the users depending
on their contribution.

Nevertheless, to secure our protocol and to ensure that every
user will obey the protocol we introduce a new hierarchy
of nodes simply called peacemaker entity. The peacemaker’s
entity is responsible to observe the correctness of the protocol
followed by all the federating nodes. For example, users that
refuse to cooperate with the protocol will get no payment for
their work. Moreover, users that will try to get more rewards
and try to counterfeit the correctness of the whole process will
get a punishment by the peacemaker entity. The peacemaker
will then claim the adjusted coins as their own reward for their
effort in the protocol correctness.

B. Storage Layer

This layer is responsible to store the incoming data in
the Triabase blockchain, in an online or offline mode, and
to provide access methods to various input sources. Further-
more, the incoming data will be aggregated and used by
the federated learning nodes to replicate the information and
therefore provide failure recovery, as well as, availability and

increased performance. This component is inspired by our
earlier Spate [22] and the work on data postdiction.

The federated learning process aims to train a global shared
model by aggregating local models from all clients, and
consequently allow each client to maintain its own data locally.
We follow the federated averaging model introduced in [23],
in which a fixed set of N clients, each one holding nk data
points and compute the average gradient on their local data
by having a current model wt with a fixed learning rate
η gk = ∇Fk(Wt), where Fk(Wt) = 1

nk

∑
i∈Pk

fi(Wt) is
the loss equation of the prediction on local model. Hence,
each federated client can update its local model as Wt+1 =
Wt − ηgk while the server is responsible to aggregate the
received local model of all clients as wt+1 =

∑K
k=1

nk

n Wt+1.
The primary objectives of Triabase are to protect the local

data from any external entity by not allowing them to be
extracted from the devices, and protecting the local data from
the server by never leaking private information of the local
model while updating the global model at the server side. In
addition, our research goals are to provide security to the users
and ensure confidentiality and integrity of the local models
from malicious nodes that will try to counterfeit the protocol.

C. Query/Indexing Layer

The main purpose of this layer is to minimize the query
response time that requires storage space with efficient algo-
rithms and with minimal overhead. We plan to use compres-
sion techniques to achieve more high compression ratios. In
addition, we are going to use a specific type of queries in
the Triabase architecture to optimize the response time. More
specifically the query types supported by Triabase include
standard queries, where only the newest database version is
queried, full historical queries on a particular predicate, range
historical queries on all updates in a specific time range, and
delta query that helps the users to query the changes made by
the transactions committed at any particular block.

Indexing is an essential task that intends to increase execu-
tion queries’ performance. Therefore in TriaBase architecture,
we need to index machine learning models according to their
temporal and spatial characteristics. This is important since
different models might refer to data from distinct time frames
and geographical locations. To eliminate this problem and
optimize the performance of the queries, we introduce an
unclustered B+ Tree index. Specifically, when a new block
arrives at a client, the B+ Tree index is locally updated
according to the new models. This temporal index can be
divided into multiple levels, according to our needs. The tree
lower layer (leaves) holds the pointers to specific models
stored throughout the Blockchain. Using this simple data
structure, we don’t need to scan the whole database to find
a specific model. Instead, we use the index to navigate to a
specific block and thus we improve the asymptotic complexity
to logarithmic time.



IV. LIMITATIONS AND FUTURE WORK

Privacy is critical and needs to be carefully handled in IoT
environments. Location data is inherently highly sensitive data
because it is easy to extract user activities from trajectories.
To tackle these issues, we aim at investigating techniques and
algorithms to achieve strong privacy guarantees. For example,
zk-Snarks [24] can be utilized to protect the privacy of our
infrastructure. Furthermore, we plan to use bloom filters [25],
which offer an efficient way to describe a search pattern
without specifying and revealing information for the entities
and thus enhance the privacy of our system.

In addition, a key challenge is how to achieve incremental
scalability to improve the performance of TriaBase and make
our approach more efficient. To protect the data integrity
of transactions in the network we are going to use binary
hash trees, also known as merkle trees, that constitute data
structures to efficiently verify the integrity of large datasets.
Additionally, we aim at using only byte hashes to construct
a merkle path from the root to reach a specific transaction.
Finally, theoretical analysis and empirical evaluation will be
conducted to validate the performance of our propositions.
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